Már ellentétes irányban is keringetik a protonnyalábokat a 14 hónapnyi szünet után újra működőképessé tett nagy hadronütköztetőben - számoltak be a CERN tudósai. Ez újabb lépés afelé, hogy a 10 milliárd dolláros szerkezet, a világ legnagyobb részecskegyorsítója újra teljesen működőképes legyen.
A cél az, hogy a protonnyalábokat a fénysebességhez közeli sebességgel ütköztessék egymásnak, ami által újra lehetne alkotni a közvetlenül az ősrobbanás utáni körülményeket. Ennek során új elemi részecskék jönnek létre, általában igen rövid élettartammal, amelyek tanulmányozásával az anyag tulajdonságait és a világegyetem keletkezésének titkait remélik megfejteni a fizikusok - közölte Steve Meyers, a genfi székhelyű Európai Nukleáris Kutatási Központ (CERN) egyik igazgatója.Mi az LHC?
Az Univerzum keletkezésének titkait segít megfejteni a világ legnagyobb részecskegyorsítója. A 27 kilométeres földalatti köralagútban eddig kivihetetlen kísérletek válnak megvalósíthatóvá. Így a kutatók az anyag eredetére, a sötét anyag mibenlétére kereshetik a választ, s megtudhatják, hogy milyen állapotok uralkodtak az Univerzumban röviddel annak keletkezése után. Hogy megválaszolják ezeket a kérdéseket, a csaknem a fény sebességével (a fény sebességének 99, 9999991 százalékával) száguldó két protonnyalábot az alagút négy pontján ütköztetik. E pontokon négy óriásdetektort helyeztek el, amelyek "figyelik" az ütközés során keletkező részecskéket. A tudósok az ütköztetések "törmeléke" között új részecskéket remélnek felfedezni, amelynek révén alapvetően új információhoz juthatnak a világűr természetéről, s arról, hogy hogyan jött létre az Univerzum.
Az ütközés energiája 14 terraelektronvolt (TeV), ami hétszer nagyobb, mint amit a világ jelenlegi legnagyobb gyorsítójában, a Chicago mellett működő Fermilab Tevatronján elértek. Ami különlegessé teszi a nagy hadronütköztetőt az az, hogy ez az energia a porszemnél ezermilliárdszor kisebb terültre összpontosul. Az energia ily nagyfokú koncentrációja révén újrateremtődnek az ősrobbanás (a Big Bang, avagy a "Nagy Bumm") után közvetlenül kialakuló feltételek.
A kutatók reményei szerint a nagy hadronütköztető révén megtalálhatóvá és tanulmányozhatóvá válik a modern fizikai elméletekben a részecskék tömegének kialakulásáért felelős Higgs-bozon. Ezen kívül esetleg választ kaphatnak olyan kérdésekre, mint a gravitációs erő relatív gyengesége, a térdimenziók száma, vagy az úgynevezett szuperszimmetria. Utóbbi elmélet azt feltételezi, hogy minden ismert részecskének létezik egy eddig még fel nem fedezett nagytömegű szuperpartnere.
A nagy hadronütköztető segítségével méréseket végezhetnek az úgynevezett B-mezonokkal is, amelyek révén esetleg megfejthető az anyag és az antianyag közötti különbség.
A létesítményben hatezernél több tudós dolgozik, s a kísérletek 10 milliárd dollárba, azaz 1692 milliárd forintba kerülnek. A gyorsító egy 27 km kerületű kör alakú föld alatti alagútban helyezkedik el, a felület domborzati viszonyaitól függően 50-150 méter mélyen. A korábbi nagy elektron–pozitron ütköztetőgyűrű (LEP) alagútját hasznosítja újra. A 3 méter átmérőjű alagút négy helyen keresztezi a svájci–francia határt, hosszának legnagyobb része francia területen fekszik. Az ütköztető maga ugyan föld alatt fekszik – mivel így csökkenthetők a területbérleti díjak és a mérést zavaró kozmikus sugárzás – több felszíni épület van amelyek az olyan kiegészítő berendezéseket tartalmazzák, mint a kompresszorok, ventillátorok, vezérlő elektronika és a hűtőtelep. Működése során nagyjából 80 állam 7000 fizikusa fog hozzáférni az LHC-hez.
Forrás: MTI